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Abstract

Off-policy evaluation (OPE) estimates the performance of a target policy using
offline data collected from a behavior policy, and is crucial in domains such as
robotics or healthcare where direct interaction with the environment is costly or
unsafe. Existing OPE methods are ineffective for high-dimensional, long-horizon
problems, due to exponential blow-ups in variance from importance weighting or
compounding errors from learned dynamics models. To address these challenges,
we propose STITCH-OPE, a model-based generative framework that leverages
denoising diffusion for long-horizon OPE in high-dimensional state and action
spaces. Starting with a diffusion model pre-trained on the behavior data, STITCH-
OPE generates synthetic trajectories from the target policy by guiding the denoising
process using the score function of the target policy. STITCH-OPE proposes
two technical innovations that make it advantageous for OPE: (1) prevents over-
regularization by subtracting the score of the behavior policy during guidance,
and (2) generates long-horizon trajectories by stitching partial trajectories together
end-to-end. We provide a theoretical guarantee that under mild assumptions, these
modifications result in an exponential reduction in variance versus long-horizon
trajectory diffusion. Experiments on the D4RL and OpenAI Gym benchmarks show
substantial improvement in mean squared error, correlation, and regret metrics
compared to state-of-the-art OPE methods.

1 Introduction

Given the slow and risky nature of online data collection, real-world applications of reinforcement
learning often require offline data for policy learning and evaluation [27, 53]. An important problem
of working with offline data is off-policy evaluation (OPE), which aims to evaluate the performance
of target policies using offline data collected from other behavior policies. One practical advantage of
OPE is that it saves the cost of evaluation on hardware in embodied applications in the real world [33].
However, a central challenge of OPE is the presence of distribution shift induced by differences in
behavior and target policies [27, 4]. This can lead to inaccurate estimates of policy values, making it
difficult to trust or select between multiple target policies before they are deployed [58, 31].

Numerous approaches have attempted to address the distribution shift in offline policy evaluation
by reducing either the variance of the policy value or its bias, but they are typically ineffective in
high-dimensional long-horizon problems. For example, Importance Sampling (IS) [43] estimates
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Table 1: A 2D toy problem with Gaussian dynamics illustrates the advantages of STITCH-OPE.
Row A: Behavior data is a mixture of two datasets generated by different behavior policies β1 and
β2. The target policy in column II is a piecewise function following β1 on the left half-space and
β2 on the right half-space. Policy-Guided Diffusion (PGD) in column III estimates the behavior
trajectory distribution by training a diffusion model on the behavior dataset, then leverages guided
diffusion to generate target policy trajectories [18]. PGD is unable to stitch behavior trajectories
correctly while STITCH-OPE is. One explanation is that conditional diffusion provides a higher
entropy sampling distribution than full-length diffusion, and thus ensures a broader coverage of the
modes in the behavior data (see Section 3.3 for details). Row B: The initial state is varied during
trajectory generation. As shown in column III, PGD cannot generalize to new initial states. On the
contrary, STITCH-OPE is trained on sub-trajectories that start in arbitrary states in the behavior
dataset as opposed to only initial states, which allows it to achieve better generalization. Row C:
A scenario with severe distribution shift is presented, where the behavior and target policies move
the agent in different directions. As shown in columns III and IV, the negative behavior guidance
term is essential to prevent over-regularization, which can prevent guided diffusion from addressing
distribution shift and lead to biased value estimation.

the value of the target policy by weighing the behavior policy rollouts according to the ratio of their
likelihoods. However, it suffers from the so-called curse of horizon where the variance of the estimate
increases exponentially in the evaluation horizon [30]. More recent model-free OPE estimators
reduce or eliminate the explosion in variance by estimating the long-run state-action density ratio
dπ(s, a)/dβ(s, a) between the target and behavior policy [30, 39, 57], yet they have demonstrated
poor empirical performance on high-dimensional tasks where the behavior and target policies are
different (i.e. the behavior policy is not a noisy version of the target policy) [16].

As an alternative approach, model-based OPE estimators typically learn an empirical autoregressive
model of the environment and reward function from the behavior data, which is used to generate
synthetic rollouts from the target policy for offline evaluation [21, 52, 60]. Some advantages of
the model-based paradigm include sample efficiency [29], exploitation of prior knowledge about
the dynamics [14], and better generalization to unseen states [59]. Although model-based OPE
methods often scale well to high-dimensional short-horizon problems – owing to the scalability of
the deep model-based RL paradigm – their robustness diminishes in long-horizon tasks due to the
compounding of errors in the approximated dynamics model [16, 19, 20].

Driven by the recent successes of generative diffusion in RL [36, 63, 1, 18, 37, 46], we propose Sub-
Trajectory Importance-Weighted Trajectory Composition for Long-Horizon OPE for model-based off-
policy evaluation in long-horizon high-dimensional problems. STITCH-OPE first trains a diffusion
model on behavior data, allowing it to generate dynamically feasible behavior trajectories [20].
STITCH-OPE differs from prior work by training the diffusion model on short sub-trajectories
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instead of full rollouts, where sub-trajectory generation is conditioned on the final state of the
previous generated sub-trajectory. This enables accurate trajectory “stitching" using short-horizon
rollouts, while minimizing compounding error of full-trajectory rollouts, thus bridging the gap
between model-based OPE and full-trajectory offline diffusion.

STITCH-OPE explicitly accounts for distribution shift in OPE by guiding the diffusion denoising
process [10, 20] during inference. This can be achieved by selecting the guidance function to be the
difference between the score functions of the target and behavior policies. A significant advantage of
guided diffusion is that it eliminates the need to retrain the diffusion model for each new target policy.
By pretraining the model on a variety of behavior datasets, generalization can be achieved during
guided sampling to produce feasible trajectories under the target policy, leading to robust off-policy
estimates for target policies that lack offline data. STITCH-OPE contributes the following novel
technical innovations that we consider critical to the successful and robust application of diffusion
models for OPE:

• Trajectory Stitching with Conditional Diffusion. We propose a state-conditioned guided
diffusion model for generating short sub-trajectories from the target policy (Figure 1). This
significantly improves the quality (Table 1, row A) and generalization (Table 1, row B) of
trajectory generation in long-horizon tasks. Theorem 3.3 also provides theoretical bounds
on the bias and variance of our proposed approach.

• Behavior Guidance. We show that the negative score function of the behavior policy
mitigates the diffusion model from collapsing to trajectories with large behavior likelihood,
thus improving generalization out-of-data (Table 1, row C). This negative score function
naturally arises from viewing the likelihood ratio (i.e. in importance sampling) as the
classification density in diffusion guidance [10] – a connection missed in prior work [18].

• Robustness Across Problem Difficulty. Finally, we evaluate STITCH-OPE on the OpenAI
Gym control suite [5] and the D4RL offline RL suite [15], showing significant improve-
ments compared to other recent OPE estimators across a variety of metrics (mean squared
error, rank correlation and regret), problem dimension and evaluation horizon. To our
knowledge, STITCH-OPE is the first work to demonstrate robust off-policy evaluation in
high-dimensional long-horizon tasks.

2 Preliminaries

Markov Decision Processes. We consider the standard Markov Decision Process (MDP), which
consists of a 6-tuple ⟨S,A, R, P, d0, γ⟩ [44] where: S is the continuous state space, A is the
continuous action space, R is the reward function, P is the Markov transition probability distribution,
d0 is the initial state distribution and γ ∈ [0, 1] is the discount factor.

A policy π : S × A → [0,∞) observes the current state s, samples an action according to its
conditional distribution π(·|s), and observes the immediate reward R(s, a) and the next state s′ ∼
P (·|s, a). The interaction of a policy with an MDP generates a set of trajectories of states, actions,
and rewards. The goal of reinforcement learning is to learn a policy π that maximizes the expected
return:

J(π) = Eτ∼pπ

[
T−1∑

t=0

γtR(st, at)

]
, pπ(τ) = d0(s0)

T−1∏

t=0

π(at|st)P (st+1|st, at)

over length-T trajectories τ = (s0, a0, s1, a1, . . . sT ) induced by policy π.

Off-Policy Evaluation. The goal of Off-Policy Evaluation (OPE) is to estimate the expected return
of some target policy π given only a data set of trajectories Dβ from some behavior policy β. To
estimate J(π), it is necessary to approximate the distribution over trajectories pπ(τ) induced by π
using only samples from the distribution pβ(τ). Hence, the phenomenon of distribution shift arises
whenever β is sufficiently different from π, in which case pβ(τ) is not a suitable proxy for obtaining
samples from pπ(τ) and corrections must be made to account for the distribution shift.

Denoising Diffusion Models. Denoising Diffusion Probabilistic Models (DDPMs) [48, 17] are a
class of generative models to sample from a given distribution. Given a dataset {xi}Ni=1 and the
K-step (forward) noise process xk

i =
√
αkx

k−1
i +

√
1− αkϵ, where ϵ ∼ N (0, I) is independent,
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DDPMs are trained to perform the K-step (backward) denoising process to recover xi from xK
i ∼

N (0, I). This is accomplished by running the forward process x0
i → xk

i on the original xi and
training the DDPM ϵθ on the denoising process xk−1

i |xk
i ∼ N (µ(xk

i , k), σ
2
kI) to predict the noise

ϵ so that the distribution over denoised samples x0
i matches xi. The standard reparameterization

µ(xk
i , k) = (xk

i − ϵθ(x
k
i , k)(1− αk)/σk)/

√
αk maps xk and the predicted noise ϵθ(x

k
i , k) to xk−1

to undo the noise accumulated during the forward process. The following loss function is typically
used to train a diffusion model [17]

L(θ) = Ek,xi,ϵ∼N (0,I)

[
∥ϵ− ϵθ(x

k
i , k)∥2

]
. (1)

Guided Diffusion. It is possible to guide the sampling from a trained diffusion model to maximize
some classifier p(y|x) [10]. A key observation of diffusion is that the backward diffusion process can
be well approximated by a Gaussian when the noise is small, that is, xk|xk+1 ∼ N (µk,Σk). Next,
observe that p(xk|xk+1, y) ∝ p(xk|xk+1)p(y|xk) by Bayes’ rule. Applying the first-order Taylor
approximation log p(y|xk) ≈ log p(y|µk)+(xk−µk)g(µk) at µk, where g(u) = ∇x log p(y|x)|x=u,
it can be shown that:

log(p(xk|xk+1)p(y|xk)) ∝ −1

2
(xk − µk − Σkg(µk))

TΣ−1
k (xk − µk − Σkg(µk))

∝ logN (xk;µk +Σkg(µk),Σk). (2)

In other words, it is possible to sample from the conditional (guided) distribution p(xk|xk+1, y) by
sampling from the original diffusion model with its mean shifted to µk + Σkg(µk). Appendix A
provides a worked example illustrating guided diffusion for a mixture of Gaussians.

3 Proposed Methodology

The direct method for off-policy evaluation [13] estimates the single-step autoregressive model
P̂ (st|st−1, at−1) and the reward function R̂(st, at) from the behavior data. Then, it draws tar-
get policy trajectories τ ∼ pπ(τ) by forward sampling, that is, s0 ∼ d0, a0 ∼ π(·|s0), s1 ∼
P̂ (·|s0, a0), . . . sT ∼ P̂ (·|sT−1, aT−1). However, even small errors in P̂ can lead to significant bias
in J(π) due to the compounding of errors over long horizon T [22, 19]. STITCH-OPE avoids the
compounding problem by generating the partial trajectory in a single (backward diffusion) pass,
leading to more accurate OPE estimates over a long horizon.

3.1 Guided Diffusion for Off-Policy Evaluation

It is possible to approximate pπ using guided diffusion by interpreting each data point xi as a full
trajectory τ . Given a behavior policy β and corresponding length-T trajectory distribution pβ(τ), the
corresponding length-T trajectory distribution of target policy π can be written as:

pπ(τ) = d0(s0)

T−1∏

t=0

β(at|st)P (st+1|st, at)
π(at|st)
β(at|st)

= pβ(τ)

T−1∏

t=0

π(at|st)
β(at|st)

, (3)

which is the standard importance sampling correction [43]. We address the question of tractably
learning pβ(τ) by training a diffusion model p̂β(τ) on the offline behavior data set Dβ [20], thus
approximating p̂β(τ) ≈ pβ(τ). Specifically, the diffusion model learns to map a trajectory consisting
of pure noise, τk = (sk0 , a

k
0 , . . . s

k
T ), to a noiseless behavior trajectory τ0 = (s00, a

0
0, . . . s

0
T ).

A key observation is that we can bypass importance sampling in (3) by guiding the generation process
p̂β(τ) towards pπ(τ) using diffusion guidance (2) [20]. Specifically, let xk = τk denote a noisy
behavior trajectory at step k of the forward diffusion process, and let y ∈ {0, 1} be a binary outcome
with p(y = 1|τ) ∝ ∏T−1

t=0
π(at|st)
β(at|st) . Intuitively, y indicates whether the trajectory τ is generated by

the target policy π (y = 1) or the behavior policy β (y = 0), and the likelihood ratio determines the
odds that y = 1 given τ . By (3),

pπ(τ) ∝ pβ(τ)p(y = 1|τ),
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Behavior Data Partial Rollouts

A

Pre-Trained Diffusion

τk . . . τ0

(st, ϵ
k)

State + Noise

(st, . . . st+w)

Partial Rollout

B

Target Rollouts

E

∇τ

∑
t log π(at|st) ∇τ

∑
t log β(at|st)

−

−
Policy Guidance

D

st

at
R̂(st, at) rt

Reward Predictor

C
Ĵ(π) = Epw

π
[
∑

t γ
tR̂(st, at)]

Off-Policy Evaluation

Figure 1: A conceptual illustration of STITCH-OPE, with novel contributions highlighted in orange.
A: Behavior data is sliced into partial trajectories of length w. B: The data is fed to a conditional
diffusion model taking a w-length sequence of Gaussian noise ϵ and state st as inputs, and applies the
backward diffusion process to predict the behavior trajectory of length w beginning in state st. C: To
evaluate policies, STITCH-OPE also trains a neural network on the behavior transitions to predict the
immediate reward. D: It then applies guided diffusion on the pretrained diffusion model to generate a
batch of partial target trajectories of length w, where the guidance function incorporates the score
function of the target policy and the behavior policy. E: The guided partial trajectories are stitched
end-to-end to produce full-length target trajectories. Finally, the guided trajectories are evaluated
using the empirical reward function R̂(s, a), and averaged to estimate the value of the target policy.

and thus the backward diffusion process for generating target policy trajectories for OPE can be
approximated with guidance (2):

log pπ(τ
k|τk+1) ∝ log(pβ(τ

k|τk+1)p(y = 1|τk+1))

≈ logN (τk+1;µk +Σk∇τ log p(y = 1|τ)|τk+1 ,Σk), (4)

where pβ(τ
k|τk+1) = N (µk,Σk) is the backward diffusion process. Therefore, we can obtain

feasible target policy trajectories using the guidance function:

g(τ) = ∇τ log p(y = 1|τ) = ∇τ

T−1∑

t=0

log π(at|st)−∇τ

T−1∑

t=0

log β(at|st). (5)

Given the approximate sampling distribution over the trajectories of the target policy described above,
p̂π(τ

0) =
∫
· · ·
∫
N (τK ; 0, I)

∏K
k=1 pπ(τ

k−1|τk) dτK . . . dτ1, and an empirical reward function
R̂(s, a), it is straightforward to estimate the expected return (or a statistic such as variance or quantile)
given any target policy, i.e. Ĵ(π) = Eτ∼p̂π

[∑
t γ

tR̂(st, at)
]
≈ J(π).

3.2 Negative Behavior Guidance

The target policy score function, gsimple(τ) = ∇τ

∑T−1
t=0 log π(at|st) [18], provides a simple

guidance function for OPE. However, it corresponds to a biased estimator of pπ(τ) in the context
of (3) and can generate trajectories that are unlikely under the target policy, as illustrated using the
GaussianWorld domain in Table 1 (see Appendix B for details). The behavior policy β returns a
positive angle in each state and the target policy π returns a negative angle, to test the performance
of both guidance functions under distribution shift. Conclusions are summarized in row C of Table
1. The omission of the negative guidance term results in a sampling distribution that collapses to a
high-density region under pβ(τ), where pπ(τ) could be small. In other words, behavior guidance
prevents the guided sampling distribution p̂π from becoming over-regularized.
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In our empirical evaluation, we employ the following generalization of (5) to allow fine-grained
control over the relative importance of the target and behavior policy guidance

g(τ) = α∇τ

T−1∑

t=0

log π(at|st)− λ∇τ

T−1∑

t=0

log β(at|st). (6)

Ignoring the normalizing constant which does not dependent on τ , (6) is equivalent to sampling from
the following re-weighted trajectory distribution

qπ(τ) ∝ pβ(τ)

T−1∏

t=0

π(at|st)α
β(at|st)λ

, (7)

which can be interpreted as a tempered posterior distribution [2, 6] over trajectories; the importance
of the likelihood terms associated with π and β are controlled by the choice of α and λ, respectively.
Note that the choice α = λ = 1 reduces to the standard guidance function g(τ). This is not a
good empirical choice because it can push the backward diffusion process too far from the behavior
distribution, leading to infeasible trajectories or instability. Instead, typical choices satisfy λ < α
(see Appendix L.1 for an additional experiment confirming this). The choice α = 1, λ = 0 reduces
to gsimple(τ) and is unsuitable for OPE.

3.3 Sub-Trajectory Stitching with Conditional Diffusion

Recent work has shown that full-length diffusion models do not provide sufficient compositionality
for accurate long-horizon sequence generation [7]. In addition, full-length prediction requires the
generation of sequences of length T · (dim(A) + dim(S)); this may be infeasible or inefficient on
resource-constrained systems, when T is large or when A or S is high-dimensional.

To tackle these limitations, STITCH-OPE trains a conditional diffusion model to generate behavior
sub-trajectories of length w ≪ T . To allow for a more flexible composition of behavior trajectories
during guidance, generation in STITCH-OPE is performed in a semi-autoregressive manner from the
diffusion model, which is conditioned on the last state of the previously generated sub-trajectory.

Specifically, the conditional diffusion model in STITCH-OPE, denoted as ϵθ(τkt:t+w, k|s0t ), denoises a
length-w noisy sub-trajectory τkt:t+w = (skt , a

k
t , s

k
t+1, a

k
t+1, . . . s

k
t+w−1, a

k
t+w−1, s

k
t+w) conditioned

on the last state s0t of the previously generated sub-trajectory τ0t−w:t. Generalizing (1), the loss
function of STITCH-OPE is thus

LSTITCH−OPE(θ) = Ek,t,τt:t+w∼Dβ ,ϵ∼N (0,I)

[
∥ϵ− ϵθ(τ

k
t:t+w, k|s0t )∥2

]
.

Next, writing pβ(τt:t+w|s0t ) to denote the sampling distribution over fully denoised sub-trajectories
τ0t:t+w conditioned on s0t , the sampling process (3) of STITCH-OPE can be written as:

pwπ (τ) =

T/w−1∏

t=0


pβ(τwt:w(t+1)|s0wt) ·

w(t+1)−1∏

u=wt

π(au|su)
β(au|su)


 , (8)

where target trajectories are generated by guiding the conditional diffusion model (analogous to (4))
according to

g(τwt:w(t+1)) = α∇τwt:w(t+1)

w(t+1)−1∑

u=wt

log π(au|su)− λ∇τwt:w(t+1)

w(t+1)−1∑

u=wt

log β(au|su).

A complete algorithm description of STITCH-OPE is provided in Appendix E.

To understand the intuition that the conditional diffusion model offers better compositionality than
the full-horizon prediction, we decompose the behavior trajectory distribution as a mixture over the
trajectories τj in Dβ :

pβ(st, at, . . . sT−1|s0, a0, . . . st) ≈
∑

τj∈Dβ

pβ(st, at, . . . sT−1|st, τj)p(τj |s0, a0, . . . st).
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Meanwhile, the conditional diffusion model ignores the full history of past states, i.e.:

pβ(st, at, . . . sT−1|s0, a0, . . . st) ≈
∑

τj∈Dβ

pβ(st, at, . . . sT−1|st, τj)p(τj |st).

p(τj |st) has higher entropy than p(τj |s0, a0, . . . st) since it is conditioned on less information (see
Appendix C for a proof), and thus provides a broader coverage of the diverse modes in the behavior
dataset. This improves the compositionality of guided long-horizon trajectory generation. Row A of
Table 1 illustrates this claim empirically using the GaussianWorld problem. A further claim is that
the STITCH-OPE model can generalize better across initial states with low, or even zero, probability
under d0 (see row B of Table 1). This occurs because pwβ is trained on sub-trajectories starting in
arbitrary states in Dβ , as opposed to states sampled only from d0. Therefore, sliding windows
strike an optimal balance between autoregressive methods and full-length trajectory diffusion,
providing good compositionality while avoiding the error compounding in terms of T .

3.4 Theoretical Analysis

We provide theoretical guarantees for our proposed STITCH-OPE method by analyzing its bias and
variance. The first prerequisite assumption is standard in OPE [56, 32] and limits the ratio π/β.

Assumption 3.1. There is a constant κ such that π(a|s)
β(a|s) ≤ κ for all s ∈ S, a ∈ A.

The second prerequisite assumption bounds the total variation between the learned length-w trajectory
distribution p̂wβ and the true distribution pwβ under the behavior policy β.

Assumption 3.2. TV (pwβ , p̂
w
β ) ≤ δβ for some constant δβ .

Our main result is a bound on the mean squared error of the STITCH-OPE estimator. We defer the
full proofs, technical lemmas, and definitions to Appendix D.
Theorem 3.3. Define p̂π as the (length-T ) trajectory distribution of the guided diffusion model, and
pπ as the true trajectory distribution under the target policy π. Under Assumptions 3.1 and 3.2, the
mean squared error (MSE) of the STITCH-OPE return Ĵ satisfies:

Ep̂π

[
(Ĵ − J(π))2

]
≤
(

2Bw

1− γw
κwδβ

)2

︸ ︷︷ ︸
Bias2

+10

(
T

w

)2

B2
wκ

wδβ +
8B2

w

1− γ2w
κwδβ +Varpπ

(J)

︸ ︷︷ ︸
Variance

,

where Bw = 1−γw

1−γ sups,a |R(s, a)| is a bound on the maximum length-w discounted return, and J

is the return under pπ .

Remarks. Theorem 3.3 resembles the O(exp(cT )) bound of IS-based methods [30, 32], but is
expressed in terms of w rather than T (with a more favorable O(T 2) dependence). Since w is a fixed
hyper-parameter typically chosen to be much smaller than T in practice, STITCH-OPE provides
an exponential reduction in MSE versus both importance sampling and length-T diffusion! In
Section 4, we validate this claim further by showing that STITCH-OPE outperforms full trajectory
diffusion (PGD) on most benchmarks (see Appendix L.2 for an additional experiment confirming
small w > 1 is ideal in practice). The MSE decreases as the error in the learned behavior model δβ
decreases. In practice, δβ is easier to estimate and control than the error of the target density pwπ . It is
also important to note that the variance cannot be reduced below Varpπ (J), the intrinsic variance of
the environment and the target policy.

4 Empirical Evaluation

Our empirical evaluation aims to answer the following research questions:

1. Does the combination of conditional diffusion and negative guidance (as hypothesized in
Table 1) translate to robust OPE performance on standard benchmarks?

2. Is STITCH-OPE robust across problem size (e.g., state/action dimension, horizon)?
3. Is STITCH-OPE robust across different levels of optimality of the target policy and the

classes of policies?
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Figure 2: Mean overall performance of all baselines, averaged across environments. Error bars
represent +/- one standard error.
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↓ Hopper -0.42 ± 0.03 -0.57 ± 0.02 -0.48 ± 0.01 -0.42 ± 0.00 -1.70 ± 0.04 -1.22 ± 0.02 -2.33 ± 0.02

Walker2d -0.48 ± 0.01 -1.25 ± 0.08 -0.71 ± 0.01 -0.45 ± 0.00 -0.88 ± 0.01 -0.32 ± 0.01 -1.33 ± 0.01
HalfCheetah -0.05 ± 0.00 0.01 ± 0.01 -0.84 ± 0.02 -1.19 ± 0.00 -0.37 ± 0.00 -1.47 ± 0.00 -0.85 ± 0.01
Pendulum -0.58 ± 0.00 -1.02 ± 0.04 -0.15 ± 0.00 -0.58 ± 0.00 -0.43 ± 0.01 -0.91 ± 0.01 -2.34 ± 0.07
Acrobot -0.14 ± 0.00 -0.49 ± 0.06 -1.00 ± 0.01 0.20 ± 0.01 -1.54 ± 0.02 -0.13 ± 0.01 -2.02 ± 0.05

R
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k
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↑ Hopper 0.17 ± 0.05 0.69 ± 0.06 -0.06 ± 0.13 -0.09 ± 0.14 0.52 ± 0.03 0.36 ± 0.09 0.76 ± 0.02
Walker2d 0.41 ± 0.05 0.50 ± 0.02 0.51 ± 0.11 0.42 ± 0.05 0.65 ± 0.04 -0.07 ± 0.10 0.63 ± 0.03
HalfCheetah -0.03 ± 0.06 -0.48 ± 0.07 0.57 ± 0.06 0.80 ± 0.02 0.32 ± 0.03 0.50 ± 0.00 0.87 ± 0.01
Pendulum 0.89 ± 0.03 0.72 ± 0.07 -0.60 ± 0.00 -0.40 ± 0.15 0.84 ± 0.06 0.54 ± 0.02 0.96 ± 0.02
Acrobot 0.75 ± 0.02 0.63 ± 0.08 0.52 ± 0.01 0.01 ± 0.12 0.53 ± 0.11 0.43 ± 0.14 0.82 ± 0.04

R
eg

re
t@

1
↓ Hopper 0.13 ± 0.03 0.05 ± 0.02 0.13 ± 0.02 0.27 ± 0.17 0.04 ± 0.03 0.04 ± 0.01 0.11 ± 0.04

Walker2d 0.23 ± 0.04 0.12 ± 0.00 0.09 ± 0.06 0.11 ± 0.00 0.05 ± 0.04 0.32 ± 0.16 <0.01 ± 0.00
HalfCheetah 0.36 ± 0.00 0.37 ± 0.00 0.03 ± 0.01 <0.01 ± 0.00 0.32 ± 0.03 0.10 ± 0.00 0.08 ± 0.01
Pendulum 0.03 ± 0.03 0.08 ± 0.03 0.98 ± 0.00 0.85 ± 0.13 0.07 ± 0.03 0.13 ± 0.00 <0.01 ± 0.01
Acrobot 0.04 ± 0.01 <0.01 ± 0.00 <0.01 ± 0.00 0.28 ±0.06 0.10 ± 0.06 0.22 ± 0.06 0.01 ± 0.01

Table 2: Comparison of OPE methods across environments. Error bars represent ± one standard error
across 5 seeds; any regret shown as <0.01 is nonzero but rounds to zero at two decimals.

4.1 Experiment Details

Domains We evaluate the performance of STITCH-OPE in high-dimensional long-horizon tasks us-
ing the standard D4RL benchmark [15] and their respective benchmark policies [16]. Specifically, we
use the halfcheetah-medium, hopper-medium and walker2d-medium behavior datasets. Each
evaluation consists of 10 target policies π1, π2, . . . π10 trained at varying levels of ability [16]. We
also carry out similar experiments using classical control tasks (Pendulum and Acrobot) from OpenAI
Gym [5], to evaluate the competitiveness of STITCH-OPE on standard benchmarks on which other
baselines have been extensively evaluated. For this set of environments, we obtain the target policies
by running the twin-delayed DDPG algorithm [9] (see Appendix G for details). We set the trajectory
length to T = 768 for all D4RL problems, T = 256 for Acrobot, and T = 196 for Pendulum. We
also use γ = 0.99 in all experiments. The domain details are provided in Appendix F, and the training
details of STITCH-OPE are provided in Appendix J.

Baselines We include the following model-free estimators: Fitted Q-Evaluation (FQE) [26],
Doubly-Robust OPE (DR) [51], Importance Sampling (IS) [43], and Density Ratio Estimation
(DRE) [39]. We also include the following model-based estimators: Model-Based (MB) [21, 54],
and Policy-Guided Diffusion (PGD) [18]. The implementation details are provided in Appendix H.

Metrics Each baseline method is evaluated on each pair of behavior dataset and target policy for
5 random seeds. We also generate ground-truth estimates of each target policy value by running
each policy in the environment. We evaluate the performance of each baseline using the Log Root
Mean Squared Error (LogRMSE), the Spearman Correlation, and the Regret@1 calculated as
the difference in return between the best policy selected using the baseline policy value estimates and
the actual best policy. Furthermore, to compare metrics consistently across tasks, we normalize the
returns following [16]. Appendix I contains the technical details for metric calculation.
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FQE DRE MBR PGD Ours

Log RMSE ↓
Hopper -0.21 ± 0.01 -0.38 ± 0.00 -1.56 ± 0.02 -0.89 ± 0.00 -1.65 ± 0.01
Walker2d -0.59 ± 0.01 -0.49 ± 0.00 -0.81 ± 0.01 -0.50 ± 0.00 -1.20 ± 0.01
HalfCheetah -0.19 ± 0.00 -1.19 ± 0.00 -0.24 ± 0.01 -0.96 ± 0.00 -0.50 ± 0.00

Rank Corr. ↑
Hopper 0.35 ± 0.06 0.35 ± 0.04 0.68 ± 0.02 0.45 ± 0.00 0.81 ± 0.01
Walker2d 0.03 ± 0.04 0.45 ± 0.03 0.47 ± 0.02 0.52 ± 0.01 0.46 ± 0.09
HalfCheetah 0.59 ± 0.01 0.80 ± 0.03 0.75 ± 0.05 0.46 ± 0.06 0.81 ± 0.02

Regret@1 ↓
Hopper 0.06 ± 0.03 0.41 ± 0.22 0.18 ± 0.00 <0.01 ± 0.00 <0.01 ± 0.00
Walker2d 0.24 ± 0.02 0.59 ± 0.13 0.17 ± 0.02 0.23 ± 0.00 0.03 ± 0.00
HalfCheetah <0.01 ± 0.00 <0.01 ± 0.00 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

Table 3: Comparison of OPE methods across environments when the target policy is a diffusion
policy; any regret shown as <0.01 is nonzero but rounds to zero at two decimals.

4.2 Discussion

Table 2 summarizes the performance of each method per domain, while Figure 2 summarizes the
aggregated performance averaged across all domains. STITCH-OPE outperforms all baselines in 11
out of 15 instances (shown in bold), with general agreement among the different metrics. STITCH-
OPE soundly outperforms both single-step (MB) and full-trajectory (PGD) model-based methods.
This reaffirms our argument in Section 3.3 that intermediate values of w provide a good balance
between compositionality and compounding errors. Furthermore, STITCH-OPE performs particularly
well according to rank correlation and Regret@1 (with very low standard error) and can accurately
rank and identify the best-performing policy. This suggests that the target policy score function
(with the negative behavior term) provides very informative guidance during denoising, allowing it to
correctly evaluate target policies of varying levels of ability, even as some of those policies deviate
significantly from the behavior policy. Finally, we see that STITCH-OPE performance remains
consistent across the problem dimension, highlighting the scalability of diffusion when applied to
OPE for high-dimensional problems.

4.3 Off-Policy Evaluation with Diffusion Policies

To demonstrate the ability of STITCH-OPE to evaluate more complex policy classes, we replace
target policies with diffusion policies, which have led to significant advances in robotics [8, 55]
(see Appendix K for details). Since STITCH-OPE only requires the score of the target policy, it is
computationally straightforward to perform OPE with diffusion policies, which is not the case for
other estimators that require an explicit probability distribution πi(a|s) over actions (i.e. IS, DR).
D4RL results are provided in Table 3. We see that STITCH-OPE outperforms all other baselines in 6
out of 9 instances, demonstrating robust OPE performance across multiple target policy classes.

4.4 Ablations

We conduct additional experiments to test the sensitivity of STITCH-OPE to the choice of guidance
coefficients (α and λ) and the window size w. Due to space limitations, we defer results to Appendix
L. In summary, the best performance occurs when 0 < λ < α, reaffirming our claim in Section 3.2
that optimal regularization occurs for small λ. The best performance also occurs for w = 8, showing
that STITCH-OPE provides an optimal balance between autoregressive and full-trajectory diffusion.

5 Limitations

The theory of STITCH-OPE relies on (standard) Assumptions 3.1 and 3.2. In practice, if there
exist many (s, a) pairs such that β(a|s) = 0 but π(a|s) > 0, then the behavior data may be
incomplete and diffusion guidance could generate infeasible trajectories and produce biased estimates
of J(π). Diffusion models trained on image data in other applications are often easy to interpret;
however, evaluating the fidelity of the trajectories generated from the trained behavior model pβ(τ) is
challenging when the state is complex and difficult to interpret or partially observable. Finally, while

9



STITCH-OPE has demonstrated excellent performance on existing OPE benchmarks, it remains
unanswered whether its benefits also apply to domain-specific problems outside robotics.

6 Conclusion

We presented STITCH-OPE for off-policy evaluation in high-dimensional, long-horizon environments.
STITCH-OPE trains a conditional diffusion model to generate behavior sub-trajectories, and applies
diffusion guidance using the score of the target policy to correct the distribution shift induced by the
target policy. Our novelties include trajectory stitching and negative behavior policy guidance, which
were shown to improve composition and generalization. Using D4RL and OpenAI Gym benchmarks,
we showed that STITCH-OPE outperforms state-of-the-art OPE methods across MSE, correlation
and regret metrics. Future work could investigate online data collection to address severe distribution
shift, or explore ways to adapt the guidance coefficients or incorporate additional knowledge into
the guidance function (e.g. additional structure on the dynamics). It also remains an open question
whether the advantages of STITCH-OPE apply to offline policy optimization.
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STITCH-OPE: Trajectory Stitching with Guided
Diffusion for Off-Policy Evaluation

Supplementary Material

Abstract

This supplement to the paper discusses algorithmic and experiment details that
were not included in the main paper due to space limitations. It includes proofs of
all main theoretical claims, as well as all configurations and parameter settings that
are required to reproduce the experiments. It includes additional experiments and
ablation studies that were excluded from the main paper due to space limitations.
It also includes a review of the recent literature on off-policy evaluation in RL.
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A Pedagogical Example for Guided Diffusion

We consider the simple two-component mixture of Gaussians with density function

p(x) = 0.5N (x; 1, 0.52) + 0.5N (x;−1, 0.52),
where N (x;µ, σ2) is the density function of a N (µ, σ2) distribution. Using the standard substitution

ϵ(xk, k) = −σk∇ log p(xk)

in the backward diffusion process, produces the backward diffusion process

xk−1|xk ∼ N ((xk + (1− αk)∇ log p(xk))/
√
αk, σ

2
k).

To illustrate the effects of a guidance function on the sampling process, we consider the guidance
function associated with the (unscaled) score of a N (1, 0.52) distribution, i.e.

g(x) = −(x− 1)/0.52.

Then, the guided backward diffusion process has mean:

xk + (1− αk)∇ log p(xk))√
αk

+ σ2
kg(x

k)

=
xk + (1− αk)

(
∇ log p(xk) + σ2

kg(x
k)
√
αk/(1− αk)

)
√
αk

,

which corresponds to a standard backward diffusion process with the modified score function

∇ log p(xk) + σ2
kg(x

k)
√
αk/(1− αk),

which would place more weight on the rightmost mode of the Gaussian mixture during the backward
diffusion process.

We run the backward denoising diffusion process using the exact score function ∇ log p(xk). The
sampling distributions of xk are plotted at various denoising time steps k in Figure 3.
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Figure 3: Pedagogical example illustrating guided diffusion sample generation for a Gaussian
mixture 0.5N (1, 0.52)+0.5N (−1, 0.52). Top row: histograms of samples from unguided backward
diffusion at steps k = 8, 6, 4, 0, where ∇ log p(x) is the score of the Gaussian mixture shown in
blue. Bottom row: histograms of samples from guided diffusion (2) using the score function of a
N (1, 0.52) distribution, i.e. g(x) = −(x− 1)/0.52. The modified score function corresponding to
the guided diffusion process is shown in blue. The guided score function (the score of the actual
sampling density) is significantly shifted and skewed, relative to the original score function, at the
intermediate denoising time steps (k = 6, 4). This ensures that the right mode of the Gaussian
mixture is sampled more frequently during denoising.

B GaussianWorld Domain

The GaussianWorld domain is a toy 2-dimensional Markov decision process defined designed to
illustrate and compare generalization and compositionality of diffusion models (Table 1). It is defined
as follows:
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Decision Epochs The decision epochs are t = 0, 1, 2, . . . T where we set T = 128 in our experi-
ments.

State Space S = R2 describes all positions (xt, yt) of a particle in space at every decision epoch t.
It is assumed that xt is the x-coordinate and yt is the y-coordinate. The initial state is s0 = (0, 0)
unless otherwise specified.

Action Space A = R describes the (counterclockwise) angle of the movement vector of the particle
at every decision epoch, relative to the horizontal.

Transitions Letting at be the angle of movement of the particle at time t, the transitions of xt and
yt are defined as follows:

xt+1 = xt + 0.02 · cos(at + εt), yt+1 = yt + 0.02 · sin(at + εt), εt ∼ N (0, 0.22).

Here, εt is an i.i.d. Gaussian noise added to the actions before they are applied by the controller.

Reward Function and Discount The problem is not solved so we leave the reward unspecified.
We also leave the discount factor unspecified.

C Proof that Conditional Diffusion Increases Entropy

We begin with the following definitions.

Definition C.1 (Entropy). Let p(x) be a density function of a random variable X with support X .
The entropy of X is defined as

H(X) =

∫

X
p(x) log

(
1

p(x)

)
dx.

Definition C.2 (Conditional Entropy). The conditional entropy of X given Y on support Y is defined
as

H(X|Y ) = Ey∈Y [H(X|Y = y)].

Our goal is to prove

Theorem C.3. Let St be the random state at time t sampled according to the conditional distribution
p(St+1 = s|St = x,At = u), and let At be a random action following some conditional distribution
p(At = a|St = x). Then H(τ |St) ≥ H(τ |S0, A0 . . . St), where τ is a (random) sub-trajectory
beginning in state St.

Proof. First, letting U = (S0, A0, . . . St−1, At−1), observe that:

H(U, τ |St = s)

=

∫∫
p(U = u, τ |St = s) log

(
1

p(U = u, τ |St = s)

)
dudτ

=

∫∫
p(U = u, τ |St = s) log

(
1

p(U = u|St = s)p(τ |U = u, St = s)

)
dudτ

=

∫
p(U = u|St = s) log

(
1

p(U = u|St = s)

)
du

+

∫
p(U = u|St = s)

∫
p(τ |U = u, St = s) log

(
1

p(τ |U = u, St = s)

)
dudτ

= H(U |St = s) + Eu∈U|St=s[H(τ |U = u, St = s)].

Next, using the additivity property of expectation and law of total expectation:

H(U, τ |St) = Es∈St
[H(U |St = s)] + Es∈St,u∈U [H(τ |U = u, St = s)]

= H(U |St) +H(τ |U, St).
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Next, we prove sub-additivity of conditional entropy:

H(U, τ |St = s)−H(U |St = s)−H(τ |St = s)

=

∫∫
p(U = u, τ |St = s) log

(
1

p(U = u, τ |St = s)

)
dudτ

−
∫

p(U = u|St = s) log

(
1

p(U = u|St = s)

)
du−

∫
p(τ |St = s) log

(
1

p(τ |St = s)

)
dτ

=

∫∫
p(U = u, τ |St = s) log

(
p(τ |St = s)p(U = u|St = s)

p(U = u, τ |St = s)

)
dudτ

≤ log

∫∫
p(U = u, τ |St = s)

(
p(τ |St = s)p(U = u|st = s)

p(U = u, τ |St = s)

)
dudτ

= log 1 = 0,

where the inequality in the derivation follows by Jensen’s inequality. This implies that

H(U, τ |St = s) ≤ H(U |St = s) +H(τ |St = s).

Taking expectation of both sides with respect to St, and using the monotonicity and additivity
properties of expectation:

H(U, τ |St) = Es∈St [H(U, τ |St = s)]

≤ Es∈St [H(U |St = s) +H(τ |St = s)] = H(U |St) +H(τ |St).

Finally, putting it all together:

H(τ |U, St) = H(U, τ |St)−H(U |St) ≤ H(U |St) +H(τ |St)−H(U |St) = H(τ |St),

which completes the proof.

D Theoretical Analysis

D.1 Assumptions and Definitions

We decompose a full trajectory of length T into N = T/w non-overlapping sub-trajectories (or
chunks), each of length w. Each chunk Si ∈ T (w) is defined as

Si := (siw, aiw, siw+1, aiw+1, . . . , s(i+1)w).

Let the full trajectory be defined as

S = (S0, S1, . . . , SN−1).

We define the boundary state Xi as the initial state of chunk Si:

Xi := siw, i = 0, 1 . . . N,

which form the backbone of the generative process.

We assume the following factored generative process for trajectories

p(S0, S1, . . . , SN−1) = p(X0)

N−1∏

i=0

p(Si | Xi) p(Xi+1 | Si).

This implies that the boundary state sequence X = (X0, X1, . . . , XN ) forms a first-order Markov
chain

p(Xi+1 | Si) = p(Xi+1 | Xi).

Each chunk Si produces a scalar discounted return Yi, defined as

Yi := f(Si) =

w−1∑

j=0

γjR̂(siw+j , aiw+j),
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where R̂ is a learned reward model, and γ ∈ [0, 1] is the discount factor.

Given a bound Rmax <∞ on the absolute reward, we define the maximum per-chunk return bound
as:

Bw :=

w−1∑

j=0

γjRmax =
Rmax(1− γw)

1− γ
⇒ |Yi| ≤ Bw.

The cumulative return over the full trajectory is approximated by

Ĵ =

N−1∑

i=0

γiwYi,

and the expected return under the target policy π is:

J(π) := Epπ
[Ĵ ] = Epπ

[
N−1∑

i=0

γiwYi

]
.

Definition D.1 (Chunked Behavior Distributions). Let p(w)
β denote the true distribution over behavior

chunks Si, and let p̂(w)
β be the learned conditional distribution modeled by the diffusion process.

These distributions describe how chunks are generated given boundary states:

p
(w)
β (Si | Xi), p̂

(w)
β (Si | Xi).

Definition D.2 (Total Variation Distance). The total variation distance between two probability
distributions P and Q over the same measurable space X is defined as

TV(P,Q) := sup
A⊆X

|P (A)−Q(A)|.

We now restate the two assumptions presented in the main text for convenience.

Assumption D.3 (Bounded Likelihood Ratio). There is a constant κ such that π(a|s)
β(a|s) ≤ κ for all

s ∈ S and a ∈ A.

Note that this assumption can be easily verified in our experimental setting. Since the action spaces
are closed intervals and the behavior and target policy distributions are both represented as truncated
Gaussian distributions, the ratio of the two policies is bounded over the action space.
Assumption D.4 (Chunk-wise Model Fit). The total variation distance between the true chunk
distribution p

(w)
β and the learned conditional distribution p̂

(w)
β is bounded by some constant δβ > 0,

TV
(
p
(w)
β , p̂

(w)
β

)
≤ δβ .

D.2 Analysis of the Bias

We begin by bounding the total variation distance between the true target distribution p
(w)
π and the

guided model p̂(w)
π .

Lemma D.5. The total variation distance between the guided model p̂(w)
π and the true target

distribution p
(w)
π satisfies

TV
(
p(w)
π , p̂(w)

π

)
≤ κ2 · δβ

Proof. By the definition of total variation distance

TV(p(w)
π , p̂(w)

π ) =
1

2

∫ ∣∣∣p(w)
π (τ)− p̂(w)

π (τ)
∣∣∣ dτ.

Using the reweighted form of each distribution

TV(p(w)
π , p̂(w)

π ) =
1

2

∫ ∣∣∣∣∣∣

(
p
(w)
β (τ)− p̂

(w)
β (τ)

)
·
w−1∏

j=0

π(aj | sj)
β(aj | sj)

∣∣∣∣∣∣
dτ,
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and applying the bound on the likelihood ratio (Assumption D.3):

TV(p(w)
π , p̂(w)

π ) ≤ κw

2

∫ ∣∣∣p(w)
β (τ)− p̂

(w)
β (τ)

∣∣∣ dτ = κw · TV(p
(w)
β , p̂

(w)
β ) ≤ κw · δβ .

This completes the proof.

Let the total variation distance between the true target distribution and the guided diffusion model be
denoted by

δπ := TV
(
p(w)
π , p̂(w)

π

)
.

By Lemma D.5, we have the bound
δπ ≤ κw · δβ .

We now derive a bound on the absolute bias of the estimated return when sampling chunks from the
guided model p̂(w)

π instead of the true target distribution p
(w)
π .

Lemma D.6 (Expectation Difference Bound via Total Variation). Let p and q be two probability
densities on a probability space X . Let

∥f∥∞ = sup
x∈X

∣∣f(x)
∣∣

be the supremum norm of a bounded function f : X → R, and let:

∥p− q∥1 =

∫

X

∣∣p(x)− q(x)
∣∣dx, TV(p, q) = 1

2 ∥p− q∥1.
Then ∣∣Ex∼p[f(x)] − Ex∼q[f(x)]

∣∣ ≤ 2 ∥f∥∞ TV(p, q).

Proof.
∣∣Ep[f ]− Eq[f ]

∣∣ =
∣∣∣
∫

X
f(x) p(x) dx −

∫

X
f(x) q(x) dx

∣∣∣

=
∣∣∣
∫

X
f(x)

(
p(x)− q(x)

)
dx
∣∣∣ ≤

∫

X

∣∣f(x)
∣∣ ∣∣p(x)− q(x)

∣∣ dx

≤ ∥f∥∞
∫

X

∣∣p(x)− q(x)
∣∣dx = 2 ∥f∥∞ TV(p, q).

This completes the proof.

Lemma D.7 (Marginal TV Bound via Conditional TV). Let p(x | s) and p̂(x | s) be conditional
densities over chunk x ∈ T (w), given state s ∈ S , and let µ(s) denote the marginal distribution over
s. Then

TV

(∫
p(x | s)µ(s)ds,

∫
p̂(x | s)µ(s)ds

)
≤
∫

TV (p(· | s), p̂(· | s))µ(s)ds.

In particular, if TV(p(· | s), p̂(· | s)) ≤ ϵ for all s, then
TV(p, p̂) ≤ ϵ.

Proof. Let p(x) =
∫
p(x | s)µ(s)ds, p̂(x) =

∫
p̂(x | s)µ(s)ds. Then:

TV(p, p̂) =
1

2

∫
|p(x)− p̂(x)|dx

=
1

2

∫ ∣∣∣∣
∫

µ(s) [p(x | s)− p̂(x | s)] ds
∣∣∣∣dx

≤ 1

2

∫∫
µ(s) |p(x | s)− p̂(x | s)|dsdx (by Jensen’s inequality)

=

∫
µ(s)

[
1

2

∫
|p(x | s)− p̂(x | s)|dx

]
ds

=

∫
µ(s) · TV(p(· | s), p̂(· | s))ds.

If TV(p(· | s), p̂(· | s)) ≤ ϵ uniformly, the integral is bounded by ϵ.
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Theorem D.8 (Bias Bound for STITCH-OPE). The bias of the return estimate under the guided
diffusion model satisfies ∣∣∣Ep̂π

[Ĵ ]− J(π)
∣∣∣ ≤ 2Bw

1− γw
· δπ.

Proof. The return estimator is:

Ĵ =

N−1∑

i=0

γiwYi, where Yi = f(Si) =

w−1∑

j=0

γjR̂(siw+j , aiw+j).

Thus, the bias is:

∣∣∣Ep̂π
[Ĵ ]− Epπ

[Ĵ ]
∣∣∣ =

∣∣∣∣∣
N−1∑

i=0

γiw (Ep̂π
[Yi]− Epπ

[Yi])

∣∣∣∣∣ ≤
N−1∑

i=0

γiw |Ep̂π
[Yi]− Epπ

[Yi]| .

For each chunk i, Yi depends only on Si, with marginal distributions p̂(w,i)
π and p

(w,i)
π under p̂π and

pπ , respectively. By Lemma D.6 and Lemma D.7

|Ep̂π
[Yi]− Epπ

[Yi]| ≤ 2 · sup |Yi| · TV(p(w,i)
π , p̂(w,i)

π ).

Since |R̂(s, a)| ≤ Rmax, the per-chunk return is bounded:

|Yi| ≤
w−1∑

j=0

γjRmax = Rmax ·
1− γw

1− γ
.

Using Lemma D.5, we know that TV(p
(w,i)
π , p̂

(w,i)
π ) ≤ δπ , Thus we have

|Ep̂π
[Yi]− Epπ

[Yi]| ≤ 2 · Rmax(1− γw)

1− γ
· δπ.

Summing over chunks:

∣∣∣Ep̂π [Ĵ ]− Epπ [Ĵ ]
∣∣∣ ≤

N−1∑

i=0

γiw · 2 · Rmax(1− γw)

1− γ
· δπ = 2 · Rmax(1− γw)

1− γ
· δπ ·

N−1∑

i=0

γiw.

The geometric sum is:
N−1∑

i=0

γiw ≤
∞∑

i=0

γiw =
1

1− γw
.

Thus: ∣∣∣Ep̂π
[Ĵ ]− Epπ

[Ĵ ]
∣∣∣ ≤ 2 · Rmax(1− γw)

1− γ
· δπ ·

1

1− γw
=

2Bw

1− γw
· δπ.

This completes the proof.

Corollary D.9 (Bias Bound in Terms of Model Fit δβ). Under the assumptions
supi TV(p

(w,i)
π , p̂

(w,i)
π ) ≤ δπ ≤ κw · δβ and supτ |Ĵ(τ)| ≤ Rmax

1−γ , the bias satisfies
∣∣∣Ep̂π

[Ĵ ]− J(π)
∣∣∣ ≤ 2Bw

1− γw
· κw · δβ .

D.3 Analysis of the Variance

Lemma D.10 (Conditional Independence of Chunk Rewards). Let Xi := siw be the boundary state
at the start of chunk Si, and define:

Yi := f(Si) =

w−1∑

j=0

γj R̂(siw+j , aiw+j).

Assume the generative process satisfies the following properties:
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X0 X1 X2 XN

S0 S1 S2 SN−1

Y0 Y1 Y2 YN−1

Figure 4: Illustration of the sub-trajectory decomposition. Each chunk Si generates a reward sequence
Yi and leads to a boundary state Xi+1.

• Each chunk Si is generated independently given Xi

• The return Yi is a deterministic function of Si.

Then for all i ̸= j, the returns Yi and Yj are conditionally independent given the full boundary state
chain X0, X1, . . . , XN ,

Yi ⊥⊥ Yj

∣∣ X0, . . . , XN .

Proof. Refer to the graphical model in Figure 4. The nodes X0, X1, . . . , XN form a Markov chain.
Each chunk Si is a child of Xi, and each return Yi is a child of Si.

Now consider any path from Yi to Yj . Such a path must go through:

Yi ← Si ← Xi ⇝ Xi+1 ⇝ · · ·⇝ Xj → Sj → Yj .

All such paths must traverse through at least one boundary node Xk. Since we are conditioning on all
X0, . . . , XN , and these nodes are non-colliders on every path from Yi to Yj , all such paths are blocked.
By the criterion of d-separation (see, e.g. Chapter 8 in [3]), this implies Yi ⊥⊥ Yj | X0, . . . , XN .

Theorem D.11 (Variance Bound). Let p̂π denote the trajectory distribution induced by the guided
diffusion model, and pπ the true trajectory distribution under the target policy. Let Ĵ be the return
estimator using a learned reward model. Then

Varp̂π (Ĵ) ≤ Varpπ (J) + 10

(
T

w

)2

B2
wκ

wδβ +
2B2

w

1− γ2w
κwδβ ,

where Bw denotes the maximum per-chunk discounted return.

Proof. We begin by applying the law of total variance under the guided model distribution p̂π

Varp̂π
(Ĵ) = Ep̂π

[
Varp̂π

(Ĵ | X)
]
+Varp̂π

(
Ep̂π

[Ĵ | X]
)
.

Using Lemma D.10 we have that the chunk-level rewards Yi and Yj are conditionally independent
given the boundary states X0, X1, . . . , XN :

Yi ⊥⊥ Yj | X0, X1, . . . , XN for all i ̸= j.

Using this conditional independence, the variance of the total return under p̂π factorizes:

Varp̂π
[Ĵ | X] = Varp̂π

[
N−1∑

i=0

γiwYi

∣∣∣∣∣ X
]
=

N−1∑

i=0

γ2iw ·Varp̂π
(Yi | Xi).
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To bound the difference in conditional variances, we apply the law of variance

Var(Yi | Xi) = E[Y 2
i | Xi]− (E[Yi | Xi])

2
.

Let us define a bound on the per-chunk return magnitude:

Bw :=
Rmax(1− γw)

1− γ
⇒ |Yi| ≤ Bw, Y 2

i ≤ B2
w.

Using Lemma D.6 (Expectation Difference Bound via Total Variation), we have

|Epπ [f ]− Ep̂π [f ]| ≤ 2δπ · ∥f∥∞.

Applying this with f = Yi and f = Y 2
i , and using the bound |Yi| ≤ Bw, we obtain:

|Epπ [Yi]− Ep̂π [Yi]| ≤ 2δπBw,
∣∣Epπ [Y

2
i ]− Ep̂π [Y

2
i ]
∣∣ ≤ 2δπB

2
w.

We analyze the difference in conditional variances:

|Varp̂π
(Yi | Xi)−Varpπ

(Yi | Xi)|
=
∣∣Ep̂π [Y

2
i ]− Epπ [Y

2
i ]−

(
Ep̂π [Yi]

2 − Epπ [Yi]
2
)∣∣

≤
∣∣Ep̂π

[Y 2
i ]− Epπ

[Y 2
i ]
∣∣+
∣∣Ep̂π

[Yi]
2 − Epπ

[Yi]
2
∣∣

=
∣∣Ep̂π

[Y 2
i ]− Epπ

[Y 2
i ]
∣∣+ |Ep̂π

[Yi]− Epπ
[Yi]| · |Ep̂π

[Yi] + Epπ
[Yi]|

≤ 2δπB
2
w + (2δπBw)(2Bw)

= 6δπB
2
w.

This uses the triangle inequality and the identity |a2 − b2| = |a− b||a+ b|, along with the bounds
|Yi| ≤ Bw, ∥Yi∥2∞ ≤ B2

w, and total variation guarantees from Lemma D.6. Then

|Varp̂π
(Yi | Xi)−Varpπ

(Yi | Xi)| ≤ 6δπB
2
w.

We now return to bounding the first term in the law of total variance

Ep̂π

[
Varp̂π (Ĵ | X)

]
= Ep̂π

[
N−1∑

i=0

γ2iw ·Varp̂π (Yi | Xi)

]
.

Using the bound from the previous step

Varp̂π
(Yi | Xi) ≤ Varpπ

(Yi | Xi) + 6δπB
2
w.

Taking expectation over p̂π on both sides

Ep̂π [Varp̂π (Yi | Xi)] ≤ Ep̂π [Varpπ (Yi | Xi)] + 6δπB
2
w.

Now, using the expectation difference bound from Lemma D.6 again:

|Ep̂π [f ]− Epπ [f ]| ≤ 2δπ∥f∥∞, where f(Xi) := Varpπ (Yi | Xi) ≤ B2
w.

So
Ep̂π

[Varpπ
(Yi | Xi)] ≤ Epπ

[Varpπ
(Yi | Xi)] + 2δπB

2
w.

Combining both components

Ep̂π [Varp̂π (Yi | Xi)] ≤ Epπ [Varpπ (Yi | Xi)] + 8δπB
2
w.

Summing across all chunks:

Ep̂π

[
Varp̂π

(Ĵ | X)
]
=

N−1∑

i=0

γ2iw · Ep̂π
[Varp̂π

(Yi | Xi)]

≤
N−1∑

i=0

γ2iw
(
Epπ

[Varpπ
(Yi | Xi)] + 8δπB

2
w

)
.
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We can split the sum and factor out constants:

Ep̂π

[
Varp̂π

(Ĵ | X)
]
=

N−1∑

i=0

γ2iw · Epπ
[Varpπ

(Yi | Xi)] + 8δπB
2
w

N−1∑

i=0

γ2iw.

Let us define the chunk-level return variance

Epπ

[
Varpπ

(Ĵ | X)
]
:=

N−1∑

i=0

γ2iw · Epπ
[Varpπ

(Yi | Xi)] .

Therefore

Ep̂π

[
Varp̂π (Ĵ | X)

]
≤ Epπ

[
Varpπ (Ĵ | X)

]
+

8δπB
2
w

1− γ2w
.

To complete the law of total variance, we now analyze the second term:

Varp̂π

(
Ep̂π

[Ĵ | X]
)
= Varp̂π

(Zp̂), where Zp̂ :=

N−1∑

k=0

gk(Xk), gk(x) := Ep̂π
[Yk | Xk = x].

We define the corresponding ideal (true model) version:

Zp :=

N−1∑

k=0

g̃k(Xk), g̃k(x) := Epπ
[Yk | Xk = x].

Our goal is to bound the variance difference:

∆mean := Varp̂π (Zp̂)−Varpπ (Zp) = (Mp̂ −Mp)− (mp̂ −mp)(mp̂ +mp),

where Mp̂ := Ep̂π
[Z2

p̂ ], mp̂ := Ep̂π
[Zp̂], and similarly for Mp, mp.

Insert and subtract a common term:

mp̂ −mp =

N−1∑

k=0

(Ep̂π
[gk(Xk)]− Ep̂π

[g̃k(Xk)]) +

N−1∑

k=0

(Ep̂π
[g̃k(Xk)]− Epπ

[g̃k(Xk)]) .

Each term is bounded by 2δπBw, so |mp̂ −mp| ≤ 4NδπBw.

Expand both squares:

Z2
p̂ =

N−1∑

k=0

g2k(Xk) + 2
∑

0≤k<ℓ≤N−1

gk(Xk)gℓ(Xℓ),

Z2
p =

N−1∑

k=0

g̃2k(Xk) + 2
∑

0≤k<ℓ≤N−1

g̃k(Xk)g̃ℓ(Xℓ).

Each term (both diagonal and cross terms) is bounded in total variation with sup-norm B2
w, yielding

|Mp̂ −Mp| ≤ 2N2δπB
2
w.

From the bound on the means:

|mp̂|, |mp| ≤ NBw ⇒ |mp̂ +mp| ≤ 2NBw.

So, the product term:

|(mp̂ −mp)(mp̂ +mp)| ≤ (4NδπBw)(2NBw) = 8N2δπB
2
w.

Combining both:

|∆mean| = |Varp̂π
(Zp̂)−Varpπ

(Zp)| ≤ 2N2δπB
2
w + 8N2δπB

2
w = 10N2δπB

2
w,

which yields

∣∣∣Varp̂π

(
Ep̂π

[Ĵ | X]
)
−Varpπ

(Epπ
[J | X])

∣∣∣ ≤ 10 · T
2

w2
· δπB2

w.
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Combining the two components from the law of total variance, we conclude:

Varp̂π
(Ĵ) = Ep̂π

[
Varp̂π

(Ĵ | X)
]
+Varp̂π

(
Ep̂π

[Ĵ | X]
)

≤ Epπ

[
Varpπ

(Ĵ | X)
]
+

8δπB
2
w

1− γ2w
+Varpπ

(Epπ
[J | X]) + 10

(
T

w

)2

δπB
2
w

= Varpπ (J) + 10

(
T

w

)2

δπB
2
w +

8δπB
2
w

1− γ2w
.

By Lemma D.5,

Varp̂π (Ĵ) ≤ Varpπ (J) + 10

(
T

w

)2

B2
wκ

wδβ +
8B2

w

1− γ2w
κwδβ ,

and the proof is complete.

D.4 Proof of the Bias-Variance Decomposition (Theorem 3.3)

Finally, we can bound the mean squared error of STITCH-OPE.

Theorem D.12. Under Assumption D.3 and D.4, and using the notation of Theorem D.8 and Theorem
D.11, the mean squared error of STITCH-OPE is bounded by

Ep̂π

[
(Ĵ − J(π))2

]
≤
(

2Bw

1− γw
κwδβ

)2

+ 10

(
T

w

)2

B2
wκ

wδβ +
8B2

w

1− γ2w
κwδβ +Varpπ (J).

Proof. We start by adapting the standard bias-variance decomposition to our setting:

Ep̂π

[
(Ĵ − J(π))2

]
= Ep̂π

[
(Ĵ − Ep̂π

[Ĵ ] + Ep̂π
[Ĵ ]− J(π))2

]

= Ep̂π

[
(Ĵ − Ep̂π

[Ĵ ])2
]
+ Ep̂π

[
(Ep̂π

[Ĵ ]− J(π))2
]

+ Ep̂π

[
(Ĵ − Ep̂π

[Ĵ ])(Ep̂π
[Ĵ ]− J(π))

]

= Varp̂π
(Ĵ) + Biasp̂π

(Ĵ)2 + (Ep̂π
[Ĵ ]− J(π))(Ep̂π

[Ĵ − Ep̂π
[Ĵ ]])

= Varp̂π (Ĵ) + Biasp̂π (Ĵ)
2,

since the last term is zero. Plugging in the bounds of Theorems D.8 and D.11 completes the proof.

E Pseudocode

A high-level pseudocode of conditional diffusion model training in STITCH-OPE is provided as
Algorithm 1. A pseudocode of the off-policy evaluation subroutine for a single rollout is provided as
Algorithm 2. Empirically, we have found that per-term normalization of the guidance function (line
9) resulted in more consistent performance, and allowed the guidance coefficients α and λ to be more
easily tuned.

F Domains

We include experiments on the medium datasets from the D4RL offline suite [15], and Pendulum
and Acrobot domains from the OpenAI Gym suite [5]. We set the evaluation horizon to T = 768 for
D4RL, T = 256 for Acrobot and T = 196 for Pendulum, and we use γ = 0.99 in all experiments.
Furthermore, Acrobot uses a discrete action space and is incompatible with our method, so we
modified the domain to take continuous actions. Table 4 summarizes the key properties of each
domain.
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Algorithm 1 Conditional Diffusion Model Training in STITCH-OPE

Require: diffusion model ϵθ(τ, k|s), behavior data Dβ , w ≥ 0, learning rate η > 0, {σk}Kk=1 and
{αk}Kk=1 positive

1: ᾱk ←
∏k

t=1 αt for k = 1 . . .K
2: initialize θ randomly
3: repeat
4: sample length-w sub-trajectory τ0 = (s0, a0, s1, . . . sw) from Dβ

5: sample k ∼ Uniform({1, . . .K}) ▷ Sample denoising time step k
6: sample ϵ ∼ N (0, I) ▷ Sample pure noise sub-trajectory
7: ∇θL(θ)← ∇θ∥ϵ− ϵθ(

√
ᾱkτ

0 + σkϵ, k|s0)∥2 ▷ Gradient descent step on θ
8: θ ← θ − η∇θL(θ)
9: until converged

10: return ϵθ

Algorithm 2 Off-Policy Evaluation in STITCH-OPE

Require: diffusion model ϵθ(τ, k|s) (Algorithm 1), empirical reward function R̂(s, a), behavior
policy β(a|s), target policy π(a|s), α ≥ 0, λ ≥ 0, w ≥ 0 (divides T ), {σk}Kk=1 and {αk}Kk=1
positive

1: Ĵ ← 0
2: sample s00 ∼ d0 ▷ Sample initial state
3: for t = 0 to T/w − 1 do ▷ Generation for decision epochs wt to w(t+ 1)
4: sample τKwt:w(t+1) ∼ N (0, I) ▷ Sample pure noise sub-trajectory
5: for k = K to 1 do ▷ Denoising step k

6: µk−1 ← 1√
αk

(
τkwt:w(t+1) − 1−αk

σk
ϵθ(τ

k
wt:w(t+1), k | s0wt)

)
▷ Mean of diffusion

7: gπk ←
∑w(t+1)−1

u=wt ∇τ log π(a
k
u|sku) ▷ Compute π guidance term

8: gβk ←
∑w(t+1)−1

u=wt ∇τ log β(a
k
u|sku) ▷ Compute β guidance term

9: gk ← α(gπk /∥gπk ∥2)− λ(gβk /∥g
β
k ∥2) ▷ Compute normalized guidance

10: sample τk−1
wt:w(t+1) ∼ N

(
µk + σ2

kgk, σ
2
kI
)

▷ Apply guided diffusion step
11: end for
12: Ĵ ← Ĵ +

∑w(t+1)−1
u=wt γuR̂(s0u, a

0
u) ▷ Update π return using denoised τ0wt:w(t+1)

13: end for
14: return Ĵ

Description Hopper Walker HalfCheetah Pendulum Acrobot
state dimension 11 17 17 3 6

action dimension 3 6 6 1 3
range of action [−1, 1] [−1, 1] [−1, 1] [−2, 2] [−1, 1]
rollout length T 768 768 768 196 256
discount factor γ 0.99 0.99 0.99 0.99 0.99

Table 4: Properties of D4RL [15] and OpenAI Gym [5] benchmark problems.

G Policies

D4RL Offline Suite Behavior and target policies and their trained procedures are described in
[16], and the policy parameters are borrowed from the official repository at https://github.com/
google-research/deep_ope (Apache 2.0 licensed). The 10 target policies of varying ability,
πθ1 , πθ2 , . . . πθ10 , are obtained by checkpointing the policy parameters θ1, θ2 . . . θ10 at various points
during training. Each target policy network models the action probability distribution πi(a|s) using a
set of independent Gaussian distributions, predicting the mean and variance (µi, σ

2
i ) of each action

component ai independently. This allows the score function of the target policy to be easily computed.
As discussed in the main text, all policies are derived from the medium datasets in all experiments.
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OpenAI Gym We model target policies π1, π2 . . . π5 as MLPs and train them in each environment
following the Twin-Delayed DDPG (TD3) [9] algorithm. The total training time is set to 50000 steps,
and we checkpoint policies every 5000 steps. The behavior policy is set to the target policy π3. The
complete list of hyper-parameters is provided in Table 5.

Description Value
number of hidden layers in actor and critic 2

number of neurons per layer in actor and critic 256
hidden activation function ReLU
output activation function tanh

Gaussian noise for exploration 0.1
noise added to target policy during critic update 0.2

target noise clipping 0.5
frequency of delayed policy updates 2

moving average of target θ′ 0.005
learning rate of Adam optimizer 0.0003

batch size 256
replay buffer size 1000000

Table 5: Hyper-parameters for training target policies on OpenAI Gym domains.

Bounded Action Space Since the action spaces for all domains are compact bounded intervals,
we need to restrict the action space of the policy networks during evaluation. We accomplish this by
applying the tanh transformation to each Gaussian action distribution and then scaling the result to
the required range. Note that this transformation constrains the action probability distribution of all
policies to a bounded range, and thus satisfies the requirement of Assumption 3.1.

H Baselines

The following model-free baseline methods were chosen for empirical comparison with STITCH-
OPE:

Fitted Q-Evaluation (FQE) [26] evaluates a target policy π by estimating its Q-value function
Qθ(s, a) using a neural network. The loss function for θ is

LFQE(θ) = E(s,a,r,s′)∼Dβ ,

a′∼π(·|s′)

[
(Qθ(s, a)− r − γQθ(s

′, a′))
2
]
.

We follow [38, 25] and learn a target Q-network Qθ′(s, a) in parallel for added stability. We use
the AdamW algorithm [34] for optimizing the loss function in a minibatched setting, with gradient
clipping applied to limit the norm of each gradient update to 1. The complete list of hyper-parameters
used is provided in Table 6.

Description Hopper Walker HalfCheetah Pendulum Acrobot
number of hidden layers 2 2 2 2 2

number of neurons per layer 500 500 500 256 100
hidden activation function sigmoid sigmoid sigmoid sigmoid sigmoid

learning rate of AdamW optimizer 0.001 0.003 0.00003 0.003 0.001
moving average of target θ′ 0.05 0.05 0.001 0.005 0.05

training epochs (passes over data set) 100 50 70 100 200
batch size 512 256 256 128 512

Table 6: Hyper-parameters for Fitted Q-Evaluation (FQE).

Doubly Robust (DR) [21, 51] leverages both importance sampling and value function estimation
to construct a combined estimate that is accurate when either one of the individual estimates is
correct. First, we define an estimate Q̂(s, a) of the Q-value function of policy π, and let V̂ (s) =
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Ea∼π(·|s)[Q̂(s, a)] be the corresponding value estimate. We also define ρt =
π(at|st)
β(at|st) as the policy

ratio at step t. Then, the DR estimator is defined recursively as

V t+1
DR = V̂ (st) + ρt

(
rt + γV t

DR − Q̂(st, at)
)
,

such that the policy value estimate ĴDR(π) = V 0
DR. We parameterize both Q̂(s, a) and V̂ (s) as

MLPs and train them using AdamW in a mini-batched setting. Similar to FQE, we also update a
target value network to improve convergence. The full list of hyper-parameters is provided in Table 7.

Description Hopper Walker HalfCheetah Pendulum Acrobot
number of hidden layers 2 2 2 2 2

number of neurons per layer 500 500 500 256 100
hidden activation function sigmoid sigmoid sigmoid sigmoid sigmoid

learning rate of AdamW optimizer 0.0003 0.003 0.003 0.003 0.00003
moving average of target θ′ 0.05 0.05 0.05 0.05 0.001

training epochs (passes over data set) 50 50 50 100 100
batch size 32 256 512 256 128

Table 7: Hyper-parameters for Doubly Robust (DR) estimation.

Importance Sampling (IS) [43] evaluates the target policy by importance weighting the full
trajectory returns in the behavior dataset, i.e.

ĴIS(π) = Eτ∼pβ

[(
T−1∏

t=0

π(at|st)
β(at|st)

)
T−1∑

t=0

γtR(st, at)

]
.

It requires access to the target and behavior policy probabilities in order to compute the weighting.
Specifically, we use the per-decision variant of IS (PDIS), i.e.

ĴPDIS(π) = Eτ∼pβ

[
T−1∑

t=0

γt

(
t∏

u=0

π(au|su)
β(au|su)

)
R(st, at)

]
,

which has lower variance than IS.

Density Ratio Estimation (DRE) [39] estimates the ratio w(s, a) = dπ(s, a)/dβ(s, a) of the
discounted state-action occupancies of the target policy π relative to the behavior policy β. The
discounted state-action occupancy of a policy µ ∈ {β, π} is defined as

dµ(s, a) = lim
T→∞

∑T
t=0 γ

tp(st = s, at = a |µ)
∑T

t=0 γ
t

,

where p(st = s, at = a |µ) indicates the probability of sampling state-action pair (s, a) from µ at
time step t. We also tested the variants of DICE [57] but found their performance to be unsatisfactory,
so they have been omitted from the study. The target policy value is estimated as

Ĵ(π) =
1

1− γ
E(s,a,r)∼Dβ

[w(s, a) · r].

w(s, a) is parameterized as a feedforward neural network and its parameters are trained using Adam
in a mini-batched setting. Fixed hyper-parameters necessary to reproduce the experiment are listed in
Table 8. Additionally, since the method requires a kernel function to be specified, we use a Gaussian
kernel k(x, x′) = exp (−η∥x− x′∥2), where x and x′ are concatenations of the (standardized) state
and action vectors. Since this requires setting a kernel bandwidth η > 0 which affects the overall
performance significantly, we run this baseline for different values η ∈ {0.01, 0.1, 1, 10, 100} and
report the best performing result (according to log-RMSE).

The following model-based baseline methods were also chosen for empirical comparison with
STITCH-OPE. They were chosen to determine the benefits of STITCH-OPE compared to fully
autoregressive sampling, i.e. w = 1, and non-autoregressive sampling, i.e. w = T .
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Description Value
number of hidden layers of w(s, a) 2

number of neurons per layer of w(s, a) 256
hidden activation function Leaky ReLU
output activation function SoftPlus

learning rate of Adam optimizer 0.001
training epochs (passes over the data set) 20 (D4RL), 200 (Gym)

batch size 512
Table 8: Hyper-parameters for Density Ratio Estimation (DRE) [39].

Model-Based (MB) [21, 54] consists of learning dynamics P̂ (s′|s, a), reward function R̂(s, a) and
termination function D̂(s) trained on the behavior dataset to directly approximate the data-generating
distribution of the target policy, pπ(τ). P̂ directly predicts the next state s′ given the current state s

and action a. Both P̂ and R̂ can be found by solving a standard nonlinear regression problem, and D̂
can be found by solving a binary classification problem trained on termination flags in the behavior
dataset. We parameterize all functions as nonlinear MLPs and obtain their optimal parameters
using Adam in a mini-batched setting. Once we obtain their optimal parameters, we estimate the
target policy return by generating 50 length-T rollouts from the estimated model, and average their
empirical cumulative returns. The necessary hyper-parameters are described in Table 9.

Description Value
number of hidden layers 3

number of neurons per layer 500
hidden activation function ReLU

learning rate of Adam optimizer 0.0003
training epochs (passes over data set) 100

batch size 1024
Table 9: Hyper-parameters for Model-Based (MB) estimation.

Policy-Guided Diffusion (PGD) [18] takes a generative approach by simulating target policy
trajectories using a guided diffusion model. We follow the original implementation by training
a diffusion model on the behavior data, using the official implementation located at https://
github.com/EmptyJackson/policy-guided-diffusion (MIT licensed). We then generate 50
full-length trajectories from the model using guided diffusion [20] with the guidance function
gsimple(τ) = ∇τ

∑
t log π(at|st), using which we estimate the empirical return of the target policy.

All hyper-parameters for training the diffusion models are fixed as per the original paper and codebase
(see Appendix A therein for details). However, we found that the policy guidance coefficient α and
guidance normalization both have significant effects on performance, thus we ran PGD for different
choices of α ∈ {0.001, 0.01, 0.1, 1.0, 10, 100, 1000} with and without guidance normalization, and
report the best performing result (according to log-RMSE).

I Metrics

Let π1, . . . π10 be the target policies, Ĵ1(πi), Ĵ2(πi), . . . Ĵ5(πi) be the estimates of the target policy
values across the 5 seeds, and J(π1), . . . J(π10) be the target policy values estimated using 300
rollouts collected by running the target policies in the environments.

The following metrics were used to quantify and compare the performance of STITCH-OPE and all
metrics:

Log Root Mean Squared Error (LogRMSE) This is defined as the log root mean squared error
using the estimates Ĵj(π1), . . . Ĵj(π10) and the ground truth returns J(π1), . . . . . . J(π10), averaged
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across seeds j = 1 . . . 5. Mathematically,

1

5

5∑

j=1

log

√√√√ 1

10

10∑

i=1

(Ĵj(πi)− J(πi))2.

Spearman (Rank) Correlation This is defined as the Spearman correlation [49] between the
estimates Ĵj(π1), . . . Ĵj(π10) and the ground truth returns J(π1), . . . . . . J(π10), averaged across
seeds j = 1 . . . 5.

Regret@1 This is defined as the absolute difference in return between the best policy selected using
the baseline policy returns Ĵj(πi) and the policy selected according to the ground truth estimates
J(πi), averaged across seeds j = 1 . . . 5, i.e:

1

5

5∑

j=1

∣∣∣J(πimax
j

)− max
i=1...10

J(πi)
∣∣∣ , where imax

j = argmaxi=1...10 Ĵj(πi).

Normalization In order to compare metrics consistently across environments, we follow [16] and
use the normalized policy values:

Ĵj(πi)− Vmin

Vmax − Vmin
, where Vmin = min

i
J(πi), Vmax = max

i
J(πi),

where Vmin and Vmax are the minimum and maximum target policy values, respectively.

Error Bars All tables and figures report error bars defined as +/- one standard error, i.e. σ̂/
√
n

where σ̂ is the empirical standard deviation of each metric value across seeds and n is the number of
seeds (fixed to 5 for all experiments).

J STITCH-OPE Training and Hyper-Parameter Details

We follow the configuration used in [20] for training the diffusion model, including architecture,
optimizer, and noise schedule. Specifically, we parameterize the diffusion process ϵ as a UNet
architecture with residual connections [47], trained with a cosine learning rate schedule [35]. The list
of training hyper-parameters is provided in Table 10. The reward predictor R̂(s, a) is a two-layer
MLP with ReLU activations and 32 neurons per hidden layer, and is trained using Adam with a
learning rate of 0.001 and batch size of 64.

Description Value
diffusion architecture UNet

learning rate of Adam optimizer 0.0003
training epochs (passes over the data set) 150

batch size 128
training steps per epoch 5000 (D4RL), 2000 (Gym)

guidance coefficient for π, i.e. α 0.5 (D4RL), 0.1 (Gym)
guidance coefficient ratio for β , i.e. λ

α 0.5 (D4RL), 1 (Gym)
window size of sub-trajectories, i.e. w 8 (D4RL), 16 (Gym)

Table 10: Hyper-parameters for STITCH-OPE.

Guidance Coefficients For Gym domains, we use α = λ = 1, corresponding to the theoretically
justified guidance function in Equation 8, assuming low distribution shift. For D4RL tasks, we use
tempered values α = 0.5 and λ = 0.25 to improve sample stability and regularization, which we
found empirically helpful in higher-dimensional settings.
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Sub-Trajectory Length We use w = 16 for Gym domains and w = 8 for most D4RL tasks. For
HalfCheetah, we reduce to w = 4 due to the environment’s fast dynamics, which caused degradation
in stitching fidelity with longer sub-trajectories. Also to add stability for cheetah, we set the clip
denoised flag to True during the backward diffusion process.

K Diffusion Policy Training and Evaluation

We follow [55] and parameterize each target policy π′
i, i = 1 . . . 10 as a conditional diffusion model

ϵϕi
(ak, k|s), whose parameters ϕi are learned by optimizing the behavior cloning objective (compare

with (1))
L(ϕi) = Ek, ϵ∼N (0,I), s∼Dβ , a∼πi(·|s)

[
∥ϵ− ϵϕi

(ak, k|s)∥2
]
.

In order to use the fine-tuned ϵϕi(a
k, k|s) as a guidance function for off-policy evaluation in STITCH-

OPE, we use the following equivalence between score-based models and denoising diffusion [10]
(extended trivially to the conditional setting)

∇a log π
′
i(a|s)|a=ak = −ϵϕi(a

k, k|s)
σk

.

Specifically, this expression cannot be calculated at k = 0 since σ0 = 0 using the standard param-
eterization of diffusion models, so we approximate it at k = 1 and use the resulting gradient in
STITCH-OPE.

We implement the diffusion model using the CleanDiffuser package [11] with official repository
at https://github.com/CleanDiffuserTeam/CleanDiffuser (Apache 2.0 licensed). To train
the diffusion policies, we first generate rollouts from each of the pre-trained target policies in D4RL
[16], and then minimize the behavior cloning objective L(ϕi) above to obtain the diffusion policy
parameters. The list of relevant hyper-parameters is provided in Table 11.

Description Value
embedding dimension 64

hidden layer dimension 256
learning rate 0.0003

diffusion time steps 32
EMA rate 0.9999

total training steps 10000
number of transitions to generate for each dataset 1000000

training batch size 256
Table 11: Hyper-parameters for training diffusion policies.

L Additional Experiments

L.1 Sensitivity to Guidance Coefficients α and λ

We evaluate STITCH-OPE across different choices of the guidance coefficients α and λ, and plot
the resulting trends in Figure 5 for Hopper and Figure 6 for Walker2D. Each plot is generated by
applying bicubic interpolation to the grid evaluations of the Spearman correlation and LogRMSE.
The optimal coefficient values of α and λ remain consistent across environments. The optimal
balance for off-policy evaluation is attained by assigning a moderate coefficient for the target policy
score α (i.e. α < 1) and a smaller but positive coefficient to the behavior policy score λ, i.e.
0 < λ < α. Recall that λ controls the amount of distribution shift we are willing to accept during
guided trajectory generation. λ = 1 is theoretically unbiased, but potentially under-regularized and
leads to dynamically infeasible (high-variance) samples. Meanwhile, λ = 0 is often over-regularized
and leads to trajectories that are heavily biased towards the behavior policy pβ(τ). From the plots,
we see that a moderate amount of regularization is optimal (around 25% of the value of α), which is
consistent with regularization in supervised machine learning (i.e., regression).
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Figure 5: Smoothed performance landscape for Hopper. Left: Spearman correlation is largest
around α ∈ [0.1, 0.5], λ ≤ 0.5α. Right: The LogRMSE is smallest around α ∈ [0.01, 0.5], λ ∈
[0.25α, 0.75α]. These results confirm the optimal range of λ is 0 < λ < α.
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Figure 6: Smoothed performance landscape for Walker2d. Results are generally consistent with
Hopper. Left: Spearman correlation is largest around α ∈ [0.1, 0.5], λ ≈ 0.25α. Right: The
LogRMSE is smallest around α ∈ [0.1, 0.5], λ ≈ 0.75α. These results confirm the optimal range of
λ is 0 < λ < α.

L.2 Sensitivity to Window Size w

To further analyze the sensitivity to w, we evaluate STITCH-OPE across different intermediate values
of w, and compare the performance according to LogRMSE and Spearman correlation metrics. As
illustrated in Figure 7 for Hopper and 8 for Pendulum, the best performance is consistently achieved
using moderate values of w, i.e. w = 8 for Hopper and w = 16 for Pendulum. As hypothesized in
the main text, based on our analysis in Section 3.3 and Section 3.4, low values of w provide more
flexibility when stitching trajectories and thus promote compositionality, but are more susceptible to
the compounding of errors. High values of w are less susceptible to error compounding but at the
expense of compositionality and thus less adaptability to distribution shift. In the current ablation
experiment, it is clear that the best balance between compositionality and error compounding occurs
using moderate values of w, and the greatest deterioration in performance occurs for very small or
very large values. It is also important to note that increasing w reduces inference speed due to longer
trajectory generations per diffusion step, highlighting a practical trade-off between computational
cost and evaluation accuracy.

L.3 Trajectory Visualizations

We visualize and compare trajectories generated by the guided and unguided versions of STITCH-
OPE and Policy-Guided Diffusion (PGD) [18] against both random and optimal policies. These
visualizations highlight differences in the quality of generated trajectories, alignment with target

31



4 8 32 128
Window Size w

0.0

0.2

0.4

0.6

0.8

Sp
ea

rm
an

 C
or

re
la

tio
n 

4 8 32 128
Window Size w

2.0

1.5

1.0

0.5

0.0

Lo
g 

R
M

SE
 

Figure 7: Sensitivity of STITCH-OPE to window size w in the Hopper-v2 environment. Left:
Spearman rank correlation. Right: Log RMSE. Error bars denote one standard error over five random
seeds. The overall best performance is attained for w = 8, suggesting a good balance between
compositionality and error compounding.
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Figure 8: Sensitivity of STITCH-OPE to window size w in the Pendulum-v1 environment. Left:
Spearman rank correlation. Right: Log RMSE. Error bars denote one standard error over five random
seeds. The overall best performance is attained for w = 16, suggesting a good balance between
compositionality and error compounding.

policies, and generalization capabilities across various environments. As shown in Figures 9 and 11,
STITCH-OPE closely mimics the target policy behavior. On the other hand, PGD performs poorly,
significantly overestimating the performance of the random policy. Figure 10 further demonstrates
that STITCH-OPE maintains consistent and robust behavior across policy settings.

M Computing Resources

Hardware and Software All experiments were conducted on a local workstation running Ubuntu
20.04 LTS and Python 3.9, with the following hardware:

• 2× NVIDIA RTX 3090 GPUs (24 GB each)
• Intel(R) Core(TM) i9-9820X CPU @ 3.30GHz (10 cores / 20 threads)
• 128 GB RAM.

Runtime Each full training of a diffusion model for a D4RL task took approximately 20 hours to
complete, depending on environment complexity and rollout length. Each OpenAI Gym task took
approximately 5 hours. Each evaluation for a D4RL environment took around 18 hours in total (across
all 5 seeds) to complete, and each OpenAI Gym environment took around 6 hours to complete.

N Related Work

Off-policy evaluation plays a critical role in offline reinforcement learning, enabling the evaluation
of policies without directly interacting with the environment. OPE has been studied across a wide
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Figure 9: Trajectory visualizations in the Hopper environment. Both STITCH-OPE and PGD track
the optimal policy. PGD significantly overestimates the performance of the random policy, while
STITCH-OPE correctly models both the state trajectory and the termination.

range of different domains including robotics [23], healthcare [40, 45, 42] and recommender systems
[12, 50]. Relevant work includes model-free and model-based OPE approaches, including recent
generative methods in offline RL.

Model-Free Methods Model-free methods, such as Importance Sampling (IS) and per-decision
Importance Sampling (PDIS) [43] reweight trajectories (or single-step transitions) from the behavior
policy to approximate returns under a target policy. However, this class of methods suffers from the
so-called “curse of horizon”, in which the variance grows exponentially in the length of the trajectory
[30, 32]. Doubly Robust (DR) methods [21, 51, 13] further combine estimation of value functions
with importance weights, reducing the overall variance. Distribution-correction methods (DICE)
[41, 57, 61] and their variants [30, 39] try to mitigate the curse-of-horizon by performing importance
sampling from the stationary distribution of the underlying MDP. However, these methods perform
relatively poorly on high-dimensional long-horizon tasks [16].

Model-Based Methods Model-based OPE methods estimate the target policy value by learning
approximate transition and reward models from offline data and simulating trajectories under the
target policy [21, 24]. These methods have shown strong empirical performance, especially in
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Figure 10: Trajectory visualizations in the HalfCheetah environment. STITCH-OPE and PGD both
demonstrate consistent behavior across all policy types, highlighting their robust generalization on
this task.

continuous control domains [52, 60], but they often suffer from compounding errors during rollouts,
which can lead to biased estimates in high-dimensional or long-horizon settings [22, 19].

Offline Diffusion Inspired by the recent performance of diffusion models across many areas of
machine learning [17, 10], a new stream of reinforcement learning has emerged which leverages
diffusion models trained on behavior data [36, 63]. [20, 1] train diffusion models on behavior data
that can be guided to achieve new goals. [18, 46] apply guided diffusion to offline policy optimization
by setting the guidance function to be the score of the learned policy, while [62] applies guided
diffusion to satisfy added safety constraints. Unlike STITCH-OPE, these works do not use negative
guidance nor stitching, which we found leads to unstable policy values when applied directly for
offline policy evaluation over a long-horizon. [37] applies DICE to estimate the stationary distribution
of the underlying MDP, which is used as a guidance function to correct the policy distribution shift for
offline policy optimization. Unlike STITCH-OPE, this work is not directly applicable to offline policy
evaluation. Finally, [28] introduces a variant of trajectory stitching for augmenting behavior data, but
does not apply it for offline policy evaluation. To the best of our knowledge, STITCH-OPE is the first
work to apply diffusion models to evaluate policies on offline data.
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Figure 11: Trajectory visualizations in the Walker2d environment. STITCH-OPE effectively imitates
both random and optimal policies. As for the Hopper environment, PGD struggles to correctly imitate
the random policy, significantly overestimating its performance.
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